2,975 research outputs found

    Hypervelocity Impact of Spherical Aluminum 2017-T4 Projectiles on Aluminum 6061-T6 Multi-Layered Sheets

    Get PDF
    With the growing threat of orbital debris impacts to space structures, the development of space shielding concepts has been a critical research topic. In this study, numerical simulations of the hypervelocity impact response of stacked aluminum 6061-T6 sheets were performed to assess the effects of layering on penetration resistance. This work was initially motivated by set of experimental tests where a stack of four aluminum sheets of equal thickness was observed to have a higher hypervelocity ballistic resistance than a monolithic aluminum sheet with the same total thickness. A set of smoothed particle hydrodynamic simulations predicted a 40% increase in the ballistic limit for a 6-layer target compared to a monolithic sheet. In addition, the effect of variable sheet thickness and sheet ordering on the impact resistance was investigated, while still maintaining a constant overall thickness. A set of thin layers in front of a thick layer generally lead to a higher predicted ballistic limit than the inverse configuration. This work demonstrates an increase in the performance of advanced space shielding structures associated with multi-layering. This suggests that it may be possible to dramatically improve the performance of such structures by tailoring the material properties, interfaces, and layering concepts

    Bioelectrical model of head-tail patterning based on cell ion channels and intercellular gap junctions

    Get PDF
    Robust control of anterior-posterior axial patterning during regeneration is mediated by bioelectric signaling. However, a number of systems-level properties of bioelectrochemical circuits, including stochastic outcomes such as seen in permanently de-stabilized "cryptic" flatworms, are not completely understood. We present a bioelectrical model for head-tail patterning that combines single-cell characteristics such as membrane ion channels with multicellular community effects via voltage-gated gap junctions. It complements the biochemically-focused models by describing the effects of intercellular electrochemical coupling, cutting plane, and gap junction blocking of the multicellular ensemble. We provide qualitative insights into recent experiments concerning planarian anterior/posterior polarity by showing that: (i) bioelectrical signals can help separated cell domains to know their relative position after injury and contribute to the transitions between the abnormal double-head state and the normal head-tail state; (ii) the bioelectrical phase-space of the system shows a bi-stability region that can be interpreted as the cryptic system state; and (iii) context-dependent responses are obtained depending on the cutting plane position, the initial bioelectrical state of the multicellular system, and the intercellular connectivity. The model reveals how simple bioelectric circuits can exhibit complex tissue-level patterning and suggests strategies for regenerative control in vivo and in synthetic biology contexts

    Cytometer on a chip

    Get PDF
    An assay technique for label-free, highly parallel, qualitative and quantitative detection of specific cell populations in a sample and for assessing cell functional status, cell-cell interactions and cellular responses to drugs, environmental toxins, bacteria, viruses and other factors that may affect cell function. The technique includes a) creating a first array of binding regions in a predetermined spatial pattern on a sensor surface capable of specifically binding the cells to be assayed; b) creating a second set of binding regions in specific spatial patterns relative to the first set designed to efficiently capture potential secreted or released products from cells captured on the first set of binding regions; c) contacting the sensor surface with the sample, and d) simultaneously monitoring the optical properties of all the binding regions of the sensor surface to determine the presence and concentration of specific cell populations in the sample and their functional status by detecting released or secreted bioproducts

    Two new early instrumental records of air pressure and temperature for the southern European Alps

    Get PDF
    Central Europe is among the regions with the largest availability of pre-industrial meteorological records. In the Alps, however, such records are relatively rare, especially in the southern slope. We recently found and digitized two new pressure and temperature series for the Alpine cities of Rovereto (1800–1839) and Bolzano/Bozen (1842–1849) covering together the first half of the 19th century, a period characterized by large climate variability and important extreme events. The meteorological record of Rovereto, in particular, is the oldest available for the southeastern Alps. We used the shorter record of Bolzano/Bozen as a testbed for different digitization methods, namely citizen science and machine-learning based Optical Character Recognition. The data are converted to modern units, quality controlled, and homogenized. We also provide daily and monthly means together with an estimation of their uncertainty

    Defeating microprobing attacks using a resource efficient detection circuit

    No full text
    Microprobing is an attack technique against integrated circuits implementing security functions, such as OTP tokens or smartcards. It allows intercepting secrets from onchip wires as well as injecting faults for other attacks. While the necessity to etch open chip packages and to remove the passivation layer makes microprobing appear expensive, it was shown that a successful attack can be run with equipment worth a few thousand euros. On the protector’s side, however, appropriate countermeasures such as active shields, redundancy of core components, or analog detection circuits containing large capacitors, are still expensive. We present a resource efficient microbing detection circuit that we call Low Area Probing Detector (LAPD). It measures minimal timing differences between on-chip wires caused by the capacitive load of microprobes. Simulations show that it can detect up-todate probes with capacitances as low as 10 fF. As a novelty, the LAPD is merely based on digital components and does not require analog circuitry, which reduces the required area and process steps compared to previous approaches.Postprint (author’s final draft

    The low area probing detector as a countermeasure against invasive attacks

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting /republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksMicroprobing allows intercepting data from on-chip wires as well as injecting faults into data or control lines. This makes it a commonly used attack technique against security-related semiconductors, such as smart card controllers. We present the low area probing detector (LAPD) as an efficient approach to detect microprobing. It compares delay differences between symmetric lines such as bus lines to detect timing asymmetries introduced by the capacitive load of a probe. Compared with state-of-the-art microprobing countermeasures from industry, such as shields or bus encryption, the area overhead is minimal and no delays are introduced; in contrast to probing detection schemes from academia, such as the probe attempt detector, no analog circuitry is needed. We show the Monte Carlo simulation results of mismatch variations as well as process, voltage, and temperature corners on a 65-nm technology and present a simple reliability optimization. Eventually, we show that the detection of state-of-the-art commercial microprobes is possible even under extreme conditions and the margin with respect to false positives is sufficient.Peer ReviewedPostprint (author's final draft
    • …
    corecore